美国刑事执法人工智能的融合、发展与规制 AI in Policing: Integration, Development and Mechanism
作者: 王彩玉 梁立增
2023年,ChatGPT掀起全球热潮,重新定义人类知识,加速现实社会变革,而这仅是当前人工智能快速发展的一个缩影。随着人工智能赋能警务,人的智能与人工智能之间的绝对界限正被打破。对美国刑事执法人工智能的审视可沿以下两条线索展开。
一是人工智能技术演变与应用脉络。从弱人工智能应用到类ChatGPT大模型引入,美国刑事执法人工智能融合应用历经三次技术浪潮,不仅将警务技术发展推向智能化逻辑演变方向,也掀起犯罪预防、打击与治理的结构性变革。究其本质,人工智能作为一种技术赋能,在警务中体现的是以数据为应用基础、以算法为应用驱动,实现以机器换人力、以智能增效能的逻辑,重塑传统刑事执法行为与模式——治理主体机器化、治理体系算法化、治理节点前置化,但本质上只专注于特定任务表现,缺乏人类判断力、同理心与处理复杂社会互动的能力。
二是技术与社会环境间的相互形塑。当一项技术的影响不可分割地源于其设计和社会背景的结合,技术中立不再适用,必须考虑技术本身具有的伦理属性。在新冠疫情冲击下美国财政赤字、公共债务大幅上升,以“工作而非监狱”“关心而非警察”为口号的“撤资警察”(Defund the Police)运动加剧警方面临的负担过重、资金不足与人员短缺困境,基于人工智能的“精准警务”兴起,公私合作研发治理模式在提升整体安全治理能力的同时塑造市场力量,带来大规模商业活动。而人工智能嵌入刑事执法对既有警务伦理、正义理念带来的挑战和种族歧视、暴力执法等根深蒂固的“美国病”交织,迫使美国警方反思其合法性基础。在后弗洛伊德时代,美国警察何为?如何改进人工智能警务的监管与问责,修补破碎社会中的裂痕?
一、人工智能在美国刑事执法中的融合观察
(一)第一次浪潮:专家系统在美国刑事执法中的先行先试
人工智能常被误解为一项单一的新兴技术,但实际上,人工智能是一个涵盖广泛方法与技术的计算机科学领域。人工智能之父约翰·麦卡锡在1956年将其定义为“制造智能机器的科学与工程”。在概念层面,人工智能意味着机器能够独立感知、响应环境,在无人类直接干预下执行通常需要人类智慧与决策的任务。
20世纪80年代,模仿人类专家逻辑规则和推理思维构建人工智能专家系统的技术浪潮兴起,美国警界认为计算机程序可缓解因经验丰富的侦查人员退休而造成的人才流失,FBI(美国联邦调查局)率先推动以专家系统形式将人工智能应用于犯罪侦查。FBI分析师大卫·伊科夫指出,“犯罪人格分析专家利用人工智能技术捕捉连环暴力犯罪分子侧写相关难以捉摸的决策规则”——美国国家暴力犯罪分析中心开发“侧写者”系统,基于犯罪侧写员经验和研究,汇聚来自犯罪现场处置、暴力犯罪逮捕计划报告等FBI数据库中的数据,进行犯罪模式分析,寻找已知或未知犯罪人线索,并对犯罪预防策略进行有效性评估,为侦查人员提供咨询建议。1989年,美国检察官编写《执法中的人工智能和专家系统手册》,介绍专家系统在计算机辅助调度、案件侦办和警察培训等方面的实际应用,对马里兰州巴尔的摩警察局在1988年至1990年间开展的入室盗窃专家系统试点进行案例分析。
专家系统在本质上是“知识库+推理机”的组合,从人类专家中采集知识,编写大量指令,以“if-then”规则运算并在硬件中执行,完成特定领域问题推理,但并没有学习或处理不确定性问题的能力。然而,专家系统在复杂犯罪分析中展现出的潜力,为更广泛的人工智能技术在美国刑事执法中拓展应用奠定基础。
(二)第二次浪潮:机器学习在美国刑事执法中的应用普及
21世纪以来,人工智能技术和警务改革的双重演进与融合推动美国以“数据+智能”为关键要素的现代化侦查治理模式不断形成完善。
机器学习的崛起标志着人工智能发展迎来第二次浪潮,海量数据、低成本大规模并行计算以及持续优化的学习技术,实现图像和文本识别、自然语言处理等任务突破,为侦查破案赋能增效。在视频侦查中,机器学习在特征提取、对象识别、行为分析、实时监控等方面具备天然优势。在经历2001年“9·11”恐怖袭击事件、2013年波士顿马拉松爆炸案后,美国深刻意识到通过精准人脸识别和影像系统快速锁定犯罪嫌疑人的重要性,FBI投资10亿美元研发“下一代识别系统”(NGI),各州警方加大对人工智能驱动的智能视频与图像监控、自动车牌读取、无人机巡查等领域开发部署。“场景理解”是美国国家司法研究所重点资助的人工智能研发方向之一,旨在实现无人工干预下识别视频中正在进行的犯罪活动,如“一个人拔出手枪向商店橱窗开枪”。电子前沿基金会数据显示,截至2023年7月,美国约849个警察局采用人脸识别,约35个警察局采用视频分析。
机器学习重新定义美国刑事执法中的“取证”,显著提升侦查人员对物证的识别和解释能力——深度学习模型经过训练可识别复杂数据集中的模式和异常,提升DNA、指纹、虹膜、语音分析等的灵敏度、准确性,美国警方将其应用于悬置多年的性侵、凶杀、失踪等冷案分析,2018年成功查获在1970至1980年代犯下数十宗性侵与杀人案的“金州杀手”。此外,基于神经网络的犯罪现场照片和视频分析工具可突出显示隐藏的武器、细微的斗争迹象等可能被人眼忽略的细节。2012年至今,非营利公司索恩与美国警方合作,开发具备机器学习功能的聚光灯(Spotlight)软件,扫描互联网、暗网色情广告,自动查找失踪儿童并标记高风险广告,据称为警方减省60%人口贩卖调查时间。索恩还发起阿耳特弥斯项目,扫描网上历史聊天记录发现潜在儿童性侵者。
与此同时,问题导向警务、情报主导警务、热点警务、社区警务等思想与改革运动勃兴,预测性分析等机器学习方法与美国警务改革发展潮流相契合,有助于发现隐藏的犯罪模式和趋势,实现更积极主动的犯罪预防。2010年前后,洛杉矶警察局和纽约警察局率先开展犯罪时空预测实验。在加州大学洛杉矶分校布兰廷厄姆教授技术支持下,将过去10年内刑事案件记录汇总成为数据集用于训练算法,以深具地域预测性特质的财产犯罪(入室窃盗、汽车窃盗)进行试验,基于犯罪类型、犯罪地点和犯罪时间进行预测,为警方重点巡逻犯罪热点时空提供前瞻性建议、降低犯罪率和受害率,之后延伸至重大枪支凶杀案、帮派犯罪等不太受地域规律和熟悉特性限制的犯罪种类。值得关注的是,鉴于试验成果相对成功,洛杉矶警局与布兰廷厄姆教授共同开设创业公司PredPol,目前已成为市场龙头,号称“美国每33人中就有1人受到PredPol公司提供的安全保护”。万国商业机器公司(IBM)与孟菲斯、纽约警察局合作,推出蓝色镇压(Blue CRUSH)计划,基于SPSS预测分析揭示毒品、武器、卖淫等潜在犯罪趋势,标识废弃住房等影响犯罪趋势的长期因素,侦查人员不仅可以看到当前犯罪热点的多层地图,还可以看到警务部署和战术变化带来的犯罪情况变迁。大数据企业帕兰提尔、律商联讯等也纷纷加入赛道,当前基于地点的预测性警务已不再是纯粹警察内部辅助系统,而是一项每年价值数百万美元的业务、大规模商业活动。
不限于犯罪时空,美国预测性警务进一步拓展至对受害者、犯罪人的预测,“以人为本”的警务计划在美国各地蔓延。芝加哥警察局将“利用人工智能算法、根据关联和行为预测暴力犯罪受害者”纳入减少暴力犯罪战略。帕斯科县警长办公室发起“高发犯罪者”项目,涉嫌盗窃、毒品与暴力犯罪被捕的人将被算法系统分配分数,若之后在警方报告中出现五次以上将被赋予“增强分”,分数与犯罪风险挂钩,被认定为“高发犯罪者”意味着要接受警方更严格的盘查。2016年,美国首份《国家人工智能研发战略计划》将“安全和执法”列为利用人工智能推进的国家优先事项,提出执法和安全官员可通过使用模式检测来检测个人行为者的异常行为或预测危险人群的行为,从而帮助建立一个更安全的社会。伊格纳斯在《算法治理——后人类时代的政治与法律》中指出,我们正在见证“从人类执法到数字系统执法”的转变。
然而,关于技术与警务的反思并不止步于此,以机器学习为代表的人工智能技术已深度嵌入美国警务与司法改革过程。2018年12月,时任美国总统特朗普签署《第一步法》(First Step Act),规定建立联邦罪犯风险和需求评估系统(PATTERN),精确测量罪犯在监禁期间的再犯风险变化,以风险评分为基础决定是否提前释放或分配至生产性活动,推动罪犯走向无犯罪(crime-free)生活的第一步。这项举措深刻反映了美国对20世纪80年代以来严打犯罪政策的反思,对大规模监禁带来的社会混乱的担忧,也是美国利用人工智能技术优化犯罪治理路径的重要体现。
2020年以来,轰动全美的弗洛伊德案进一步暴露出美国执法机构长期存在的暴力执法和系统性种族歧视问题,民主党人士发起“撤资警察”运动,认为“问题是制度性的,减少伤害的唯一方法是从警察手中夺走权力和资金”,主张大幅削减警方预算,用财政手段倒逼警察减少暴力执法现象。基于新冠疫情和全国“撤资警察”运动带来的双重压力,美国警方面临十多年来未见的预算缩减,人员流失率达到历史最高水平,新警招聘困难,暴力犯罪激增。基于人工智能的“精准警务”(Precision Policing)应运而生,提倡在充满挑战的环境中适当使用资源,加强基于证据的犯罪防控,提升透明度和问责制,针对性处置微型犯罪人群(Micro Criminal Populations),而非扩大警务范围。声思(SoundThinking)等行业企业推出枪击检测、犯罪追踪、巡逻部署、社交媒体监控等人工智能产品,承诺让资源紧张的警察局更高效地利用警务与犯罪分析资源,在提高犯罪威慑的同时,不增加警察与公众的不利接触。2023年4月,纽约警察局宣布在时代广场部署K5自主安全机器人,配备360度摄像头和多个麦克风,用于监控周围环境是否存在可疑活动、人员并实时报告,在案发后也可提供关于暴力袭击、武装抢劫、盗窃车辆等最佳证据。
(三)第三次浪潮:类ChatGPT大模型在美国刑事执法中应用前瞻
当前,人工智能技术迎来第三次浪潮的开端,强调提升人工智能模型的解释性与通用性。这意味着工程师们致力于构建能够模拟真实世界体验、与人类进行自然互动交流以及在新任务、新情境下快速完成学习和思考的系统。ChatGPT是2022年由美国开放人工智能(OpenAI)公司发布的自然语言处理预训练模型,GPT-4升级为多模态模型,代表第三次浪潮中具有一定解释性和通用性特征的人工智能系统之一,但本质上仍属于特定领域的模型。
具备多模态的GPT-4能高效准确处理多源数据,在发现犯罪活动热点、监控社交媒体平台和在线论坛、分析海量数据识别线索关联性、为面部识别软件提供底层算法支撑等方面的潜力已获得美国学界和警界关注。2023年6月,FBI局长克里斯托弗·雷就“人工智能以及FBI如何专注于快速变化的前沿”发表讲话,表示FBI将向人工智能转型,一方面,预测并防御使用人工智能和机器学习实施恶意网络攻击等犯罪活动的威胁;另一方面,利用人工智能对侦查活动中收集的海量数据进行分类、排序。有研究提出,GPT-4通过分析证据和案件档案可生成有关案件历史和背景的详细报告,帮助侦查人员了解犯罪发生原因以及如何更好地进行侦查。马尔辛·弗朗茨凯维奇称,马萨诸塞州警察局使用GPT-4分析过去二十年的冷案,FBI将GPT-4纳入工具箱,用于线索分析与生成。
大型语言模型凭借规模庞大的语料体系、先进的预训练算法以及优异的微调算法,具备强大的语言理解和生成能力。2023年3月,奥斯汀警察局宣布与维赛特姆公共安全公司(Versaterm Public Safety)合作,推出对话式人工智能驱动的“非紧急在线报告系统”,适用于犯罪嫌疑人已不在现场、对个人没有直接危险的情况。社区成员可通过语音、短信、网页或APP与虚拟调查员联系,在人工智能引导的调查访谈中提供斗殴、盗窃、诈骗、骚扰、非法侵入、儿童监护等信息,虚拟调查员全程专心倾听、耐心提问并无缝响应,按照国家犯罪数据申报系统(NIBRS)要求自动生成犯罪报告,在警方验证后自动向个人提供案件编号和处置情况,支持英语、西班牙语、法语、中文等20多种语言。奥斯汀警察局表示,如今警方接到的求助电话比以往任何时候都多,公众服务期望也达到历史最高水平。这种针对非紧急情况的人工智能方案有助于简化犯罪报告程序,为社区提供即时安全服务与个性化关注,提升处理其他优先事项的能力。
二、人工智能在美国刑事执法中存在的问题和挑战
(一)发展的基础问题
1.数据质量:制约刑事执法人工智能发展的基础难题
无论是专家系统、机器学习,还是大型语言模型,本质都是数据驱动的智能。数据用于训练、测试和推理,塑造警用人工智能的预测、决策和生成能力。然而,美国国家司法研究所指出,“数据质量差和数据不足”已构成主要发展障碍。犯罪黑数、刑事隐案存在,记录、报告并分析犯罪活动的数据和统计信息可能只代表部分已发生的犯罪情况,家暴、性侵害、帮派暴力、毒品犯罪等领域数据收集与报告具有局限性,致使依赖于犯罪统计数据的人工智能系统产生扭曲结果;数据壁垒、融合壁垒凸显,美国各州人工智能警务系统平台建设多各自为政,数据难以流动共享;信息噪声、数据中毒值得关注,尤其是对警用大型语言模型而言,不完整的训练数据、虚假信息和未及时更新的数据集都可能导致推理偏差,模型被引导学习错误数据后可能造成数据中毒和模型反转。